### Browsed byTag: Atiyah problem on configurations

The Atiyah-Sutcliffe determinant

## The Atiyah-Sutcliffe determinant

This post is a continuation of my series of posts, which includes previous posts such as “the spin-statistics theorem and the Berry-Robbins problem” and “the Atiyah problem on configurations”. I will make use of notation introduced there, particularly in the latter post. I will explain in this post, how to define the Atiyah-Sutcliffe normalized determinant function, which is a smooth complex-valued function on $C_n(\mathbb{R}^3)$. Given a configuration $\mathbf{x} = (\mathbf{x}_1, \ldots, \mathbf{x}_n) \in C_n(\mathbb{R}^3)$ of $n$ distinct points in $\mathbb{R}^3$,…

The spin-statistics theorem and the Berry-Robbins problem

## The spin-statistics theorem and the Berry-Robbins problem

In ​1​ , Berry and Robbins propose an interesting way to obtain the spin-statistics theorem, which is close to the famous belt trick, though expressed more mathematically. They completely explain their construction for $2$ particles, but while attempting to extend their construction to $n$ particles, they faced a technical obstruction. This led to the Berry-Robbins problem. Let $C_n(\mathbb{R}^3)$ denote the configuration space of $n$ distinct particles. Then the symmetric group $S_n$ acts on $C_n(\mathbb{R}^3)$ by permuting the components of any…